Tay-Sachs disease is a lethal lysosomal storage disorder caused by mutations in the HexA gene encoding the α subunit of the lysosomal β-hexosaminidase enzyme (HEXA). Abnormal GM2 ganglioside accumulation causes progressive deterioration in the central nervous system in Tay-Sachs patients. Hexa-/-mouse model failed to display abnormal phenotype. Recently, our group generated Hexa-/-Neu3-/-mouse showed severe neuropathological indications similar to Tay-Sachs patients. Despite excessive GM2 ganglioside accumulation in the brain and visceral organs, the regulation of autophagy has not been clarified yet in the Tay-Sachs disease mouse model. Therefore, we investigated distinct steps of autophagic flux using markers including LC3 and p62 in four different brain regions from the Hexa-/-Neu3-/-mice model of Tay-Sachs disease. Our data revealed accumulated autophagosomes and autophagolysosomes indicating impairment in autophagic flux in the brain. We suggest that autophagy might be a new therapeutic target for the treatment of devastating Tay-Sachs disease.
CITATION STYLE
Sengul, T., Can, M., Ateş, N., & Seyrantepe, V. (2023). Autophagic flux is impaired in the brain tissue of Tay-Sachs disease mouse model. PLoS ONE, 18(3 March). https://doi.org/10.1371/journal.pone.0280650
Mendeley helps you to discover research relevant for your work.