Phosphorus (P) is an essential macronutrient for plant life, although it is frequently not readily available to crops. Arbuscular mycorrhiza fungi (AMF) can improve plant P levels by inducing the expression of some phosphate (Pi) transporters. Symbiotic Pi uptake by Pi transporters is crucial for AMF colonization and arbuscule dynamics. However, the functions of mycorrhiza-inducible maize Pi transporters are largely unclear. We focused on the interaction between the Pi concentration and AMF colonization in maize, and detecting the induction of a Pi transporter. We investigated AMF colonization and arbuscular development in maize under high and low Pi environments. Low Pi increased AMF colonization and promoted arbuscular development. Further measurement of P concentration showed that AMF significantly improved the maize P status under low Pi conditions. Here, we identified the Pi transporter gene, ZmPt9, which was induced by mycorrhiza formation. In addition, ZmPt9-overexpressing roots were difficult to colonize by AMF. Pi response analysis showed that ZmPt9 complements a yeast mutant defective in Pi transporter activity and improves the P concentration in rice. Together, these data indicated that ZmPt9 is a mycorrhiza-inducible Pi transporter gene involved in Pi uptake.
CITATION STYLE
Liu, F., Xu, Y., Han, G., Wang, W., Li, X., & Cheng, B. (2018). Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation. Plant and Cell Physiology, 59(8), 1683–1694. https://doi.org/10.1093/pcp/pcy094
Mendeley helps you to discover research relevant for your work.