Short-Term Prediction of City Traffic Flow via Convolutional Deep Learning

18Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nowadays, traffic management and sustainable mobility are central topics for intelligent transportation systems (ITS). Thanks to new technologies, it is possible to collect real-time data to monitor the traffic situation and contextual information by sensors. An important challenge in ITS is the ability to predict road traffic flow data. The short-term predictions (10-60 minutes) of traffic flow data is a complex nonlinear task that has been the subject of many research efforts in past few decades. Accessing traffic flow data is mandatory for a large number of applications that have to guarantee a high level of services such as traffic flow analysis, traffic flow reconstruction, which in their turn are used to compute predictions needed to perform what-if analysis, forecast routing, conditioned routing, predictions of pollutant, etc. This paper proposes a solution for short-term prediction of traffic flow data by using a architecture capable to exploit Convolutional Bidirectional Deep Long Short Term Memory neural networks (CONV-BI-LSTM). The solution adopts a different architecture and features, so as to overcome the state-of-the-art solutions and provides precise predictions addressing traffic flow data in cities, which are tendentially very noisy with respect to the ones measured in high-speed roads, the latter being the validation context for the majority of state-of-the-art solutions. The proposed solution has been developed and validated in the city context and data via Sii-Mobility, a smart city mobility and transport national project and it is currently in use in other contexts such as in Snap4City PCP EC, TRAFAIR CEF, and REPLICATE H2020 SCC1, and it is operative in those areas.

Cite

CITATION STYLE

APA

Bilotta, S., Collini, E., Nesi, P., & Pantaleo, G. (2022). Short-Term Prediction of City Traffic Flow via Convolutional Deep Learning. IEEE Access, 10, 113086–113099. https://doi.org/10.1109/ACCESS.2022.3217240

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free