A series of novel p-type conjugated copolymers, PTTVBDT, PTTVBDT-TPD, and PTTVBDT-DPP, cooperating benzo[1,2-b:4,5-b']dithiophene (BDT) and terthiophene-vinylene (TTV) units with/without thieno[3,4-c]pyrrole-4,6-dione (TPD) or pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) via Stille polymerization were synthesized and characterized. Copolymer PTTVBDT shows a low-lying HOMO energy level and ordered molecular-packing behavior. Furthermore, two terpolymers, PTTVBDT-TPD and PTTVBDT-DPP, display stronger absorption ability, alower-lying HOMO energy level, and preferred molecular orientation, due to the replacement TTV-monomer units with electron-deficient groups. Furthermore, bulk-heterojunction organic solar cells were fabricated using blends of the PTTVBDT-TPD, and PC61BM gave the best power conversion efficiency of 5.01% under the illumination of AM1.5G, 100mW·cm-2; the short circuit current (Jsc) was 11.65 mA·cm-2 which displayed a 43.8% improvement in comparison with the PTTVBDT/PC61BM device. These results demonstrate a valid strategy combining the two-dimensional molecular structure with random copolymerization strikes promising conjugated polymers to achieve highly efficient organic photovoltaics.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Hsiow, C. Y., Wang, H. Y., Lin, Y. H., Raja, R., Rwei, S. P., Chiu, W. Y., … Wang, L. (2016). Synthesis and characterization of two-dimensional conjugated polymers incorporating electron-deficient moieties for application in organic photovoltaics. Polymers, 8(11). https://doi.org/10.3390/polym8110382