There is a pressing need to haste developing advanced energy technologies to reduce dependency on crude oil and climate protection. Biofuels – liquid and gaseous fuels de‐ rived from organic matter – can play an important role in reducing of carbon dioxide (CO2 ) emissions in the transport, and can raise the energy security. By 2050, biofuels could provide 27% of total transport fuel. The use of biofuels could avoid around 2.1 gigatonnes (Gt) of CO2 emissions per year when produced sustainably. To meet this vi‐ sion, most conventional biofuel technologies need to improve conversion efficiency, cost and overall sustainability. Conventional biofuel technologies include well-established that are already producing biofuels on a commercial scale. These biofuels, commonly re‐ ferred to as first-generation, include sugar- and starch-based ethanol, oil-crop based bio‐ diesel and straight vegetable oil, as well as biogas gained through anaerobic digestion. The International Energy Agency has undertaken an effort to develop a series of global technology road maps covering 19 advanced technologies, commonly referred to as sec‐ ond- or third-generation. This new technologies are still in the research and develop‐ ment (R&D), pilot or demonstration phase [1].Significant decrease of fossil fuels and lack of new ones becomes the basis for the Olduvai theory, published by R.C. Duncan [2]. The theory postulated that in the years 2012-2030, because of shortage of energy, the world would go through an economic crisis. This crisis would lead to collapse of industrial civilization. So, there is a need to look for alternative, renewable sources of raw materials.
CITATION STYLE
Malinowski, A., Czarnocka, J., & Biernat, K. (2012). An Analysis of Physico-Chemical Properties of the Next Generation Biofuels and Their Correlation with the Requirements of Diesel Engine. In Biodiesel - Feedstocks, Production and Applications. InTech. https://doi.org/10.5772/53685
Mendeley helps you to discover research relevant for your work.