The current study attempted to evaluate the impact of drilling parameters and delamination on the bearing strength of both neat GFRP (NG) and hybrid GFRP/aluminum (Al)-wire mesh with two various configurations, first with Al-mesh in the outer surface of specimen (AG) and the other with Al-mesh in the core of specimen (GA). Drilling procedure is carried out using ∅ 6 mm carbide twist drill with three different tip angles (90°, 120° and 135°), as well as Three different speeds and feeds (1000, 2000, and 3000 rpm) and (20, 40, and 60 mm/min), respectively. Taguchi and ANOVA analyses are used to analyze the influence of processing parameters. The findings showed that AG specimen experienced the least delamination damage. The maximum bearing strength refers to NG specimen, which is 9.6% and 8.7% more than AG and GA specimens, respectively. Drill point angle has the major effect on bearing strength for both AG and GA specimens, while for NG feed rate is of the major effect. The developed regression model displayed a high level of fitness with an average prediction error of less than 3%.
CITATION STYLE
Seif, A., Fathy, A., & Megahed, A. A. (2023). Effect of drilling process parameters on bearing strength of glass fiber/aluminum mesh reinforced epoxy composites. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-39097-3
Mendeley helps you to discover research relevant for your work.