Collaboration-based function prediction in protein-protein interaction networks

3Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The cellular metabolism of a living organism is among the most complex systems that man is currently trying to understand. Part of it is described by so-called protein-protein interaction (PPI) networks, and much effort is spent on analyzing these networks. In particular, there has been much interest in predicting certain properties of nodes in the network (in this case, proteins) from the other information in the network. In this paper, we are concerned with predicting a protein's functions. Many approaches to this problem exist. Among the approaches that predict a protein's functions purely from its environment in the network, many are based on the assumption that neighboring proteins tend to have the same functions. In this work we generalize this assumption: we assume that certain neighboring proteins tend to have "collaborative", but not necessarily the same, functions. We propose a few methods that work under this new assumption. These methods yield better results than those previously considered, with improvements in F-measure ranging from 3% to 17%. This shows that the commonly made assumption of homophily in the network (or "guilt by association"), while useful, is not necessarily the best one can make. The assumption of collaborativeness is a useful generalization of it; it is operational (one can easily define methods that rely on it) and can lead to better results. © 2011 Springer-Verlag.

Cite

CITATION STYLE

APA

Rahmani, H., Blockeel, H., & Bender, A. (2011). Collaboration-based function prediction in protein-protein interaction networks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7014 LNCS, pp. 318–327). Springer Verlag. https://doi.org/10.1007/978-3-642-24800-9_30

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free