Width-based search methods have demonstrated state-of-the-art performance in a wide range of testbeds, from classical planning problems to image-based simulators such as Atari games. These methods scale independently of the size of the state-space, but exponentially in the problem width. In practice, running the algorithm with a width larger than 1 is computationally intractable, prohibiting IW from solving higher width problems. In this paper, we present a hierarchical algorithm that plans at two levels of abstraction. A high-level planner uses abstract features that are incrementally discovered from low-level pruning decisions. We illustrate this algorithm in classical planning PDDL domains as well as in pixel-based simulator domains. In classical planning, we show how IW(1) at two levels of abstraction can solve problems of width 2. For pixel-based domains, we show how in combination with a learned policy and a learned value function, the proposed hierarchical IW can outperform current flat IW-based planners in Atari games with sparse rewards.
CITATION STYLE
Junyent, M., Gómez, V., & Jonsson, A. (2021). Hierarchical Width-Based Planning and Learning. In Proceedings International Conference on Automated Planning and Scheduling, ICAPS (Vol. 2021-August, pp. 519–527). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/icaps.v31i1.15999
Mendeley helps you to discover research relevant for your work.