Performance of Machine Learning Techniques for Meteorological Drought Forecasting in the Wadi Mina Basin, Algeria

26Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

Abstract

Water resources, land and soil degradation, desertification, agricultural productivity, and food security are all adversely influenced by drought. The prediction of meteorological droughts using the standardized precipitation index (SPI) is crucial for water resource management. The modeling results for SPI at 3, 6, 9, and 12 months are based on five types of machine learning: support vector machine (SVM), additive regression, bagging, random subspace, and random forest. After training, testing, and cross-validation at five folds on sub-basin 1, the results concluded that SVM is the most effective model for predicting SPI for different months (3, 6, 9, and 12). Then, SVM, as the best model, was applied on sub-basin 2 for predicting SPI at different timescales and it achieved satisfactory outcomes. Its performance was validated on sub-basin 2 and satisfactory results were achieved. The suggested model performed better than the other models for estimating drought at sub-basins during the testing phase. The suggested model could be used to predict meteorological drought on several timescales, choose remedial measures for research basin, and assist in the management of sustainable water resources.

Cite

CITATION STYLE

APA

Achite, M., Elshaboury, N., Jehanzaib, M., Vishwakarma, D. K., Pham, Q. B., Anh, D. T., … Elbeltagi, A. (2023). Performance of Machine Learning Techniques for Meteorological Drought Forecasting in the Wadi Mina Basin, Algeria. Water (Switzerland), 15(4). https://doi.org/10.3390/w15040765

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free