Rational Design and Experimental Analysis of Short-Oligonucleotide Substrate Specificity for Targeting Bacterial Nucleases

5Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

An undecamer oligonucleotide probe based on a pair of deoxythymidines flanked by several modified nucleotides is a specific and highly efficient biosensor for micrococcal nuclease (MNase), an endonuclease produced by Staphylococcus aureus. Herein, the interaction mode and cleavage process on such oligonucleotide probes are identified and described for the first time. Also, we designed truncated pentamer probes as the minimum-length substrates required for specific and efficient biosensing. By means of computational (virtual docking) and experimental (ultra-performance liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization time-of-flight) techniques, we perform a sequence/structure-activity relationship analysis, propose a catalytically active substrate-enzyme complex, and elucidate a novel two-step phosphodiester bond hydrolysis mechanism, identifying the cleavage sites and detecting and quantifying the resulting probe fragments. Our results unravel a picture of both the enzyme-biosensor complex and a two-step cleavage/biosensing mechanism, key to the rational oligonucleotide design process.

Cite

CITATION STYLE

APA

Jiménez, T., Botero, J., Otaegui, D., Calvo, J., Hernandez, F. J., & San Sebastian, E. (2021). Rational Design and Experimental Analysis of Short-Oligonucleotide Substrate Specificity for Targeting Bacterial Nucleases. Journal of Medicinal Chemistry, 64(17), 12855–12864. https://doi.org/10.1021/acs.jmedchem.1c00884

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free