Background: The present research was aimed to develop a self-microemulsifying drug delivery system (SMEDDS) pellet to increase the dissolution rate and in vivo hypoglycemic effect of gliclazide. Gliclazide belongs to BCS class 2 and it exhibits dissolution rate-limited absorption. Thus, dissolution enhancement of gliclazide from its dosage form is a prime requirement to achieve a better therapeutic effect. The solubility of gliclazide was estimated in oils, surfactants, and co-surfactants. A most effective self-emulsification region was identified using pseudoternary phase diagrams. The optimized liquid SMEDDS gliclazide formulation was converted to SMEDDS pellets using the extrusion-spheronization technique. The in vitro release and hypoglycemic effect of SMEDDS was compared with the marketed product. Results: The optimized liquid gliclazide SMEDDS formulations contained mixtures of Tween 80 and PEG 400 and Capmul MCM C8. The gliclazide SMEDDS in liquid preparation quickly formed a fine oil-in-water microemulsion having a globule size of 31.50 nm. In vitro release of gliclazide from SMEDDS pellets was 100.9% within 20 min. SMEDDS pellets exhibited a significant reduction in plasma glucose levels in albino mice compared to the marketed product. Conclusion: The results indicated that SMEDDS pellets could be effectively used to improve the oral delivery of gliclazide.
CITATION STYLE
Patel, H., Pandey, N., Patel, B., Ranch, K., Bodiwala, K., & Vyas, B. (2020). Enhancement of in vivo hypoglycemic effect of gliclazide by developing self-microemulsifying pellet dosage form. Future Journal of Pharmaceutical Sciences, 6(1). https://doi.org/10.1186/s43094-020-00034-0
Mendeley helps you to discover research relevant for your work.