There have been significant advances with microfluidic devices and lab-on-a-chip technology leading to micro total analysis systems (μTAS) capable of analysis and discoveries in the laboratory, the field, and the clinic. Unfortunately, while the academic community is well versed in the utility and application of these devices, the public (especially promising young scientists) is relatively unaware of their existence. Furthermore, several of the underlying chemical and physical principles governing microfluidics have applications in a several STEM disciplines including engineering, chemistry, physics, and biology. Here, we highlight a series of workshops and outreach activities designed to provide elementary, middle, and high school students an opportunity to learn more about microfluidic devices through a hands-on approach. Initially, these workshops were given to high school students from traditionally underrepresented minorities as part of two week-long summer camp offered by the College of Engineering at Louisiana State University entitled REHAMS and XCITE. The demonstrations provided students with an overview of microfluidics including introductions to polymer chemistry and fluid flow dynamics. The students were able to fabricate and test their own devices using a simple microfluidic gradient generator to mix yellow and blue colored water to make green. Expanding upon these initial demonstrations, we have developed a series of outreach activities to be performed at local area elementary, middle, and high schools focusing on the use of microfluidic droplet generators as tools for cancer diagnostics. The presentations and demonstrations were adjusted depending upon the age range, but all session contained several hands-on activities to show the students what could be done in a few millimeters on a microfluidic device. To show the students what was happening in the device, we constructed large-scale version of the devices for the students to use and experiment with (e.g., a table-top microfluidic droplet trap array that uses ping pong instead of picoliter-sized aqueous droplets). Additionally, a key strength of this outreach program is the inclusion of undergraduate students from the Society of Peer Mentors at Louisiana State University as presenters to increase student engagement. As this work is preliminary in nature and no precise quantitative data has been collected about the workshops, informal discussions with student participants have all been positive with many students appearing eager to learn more about this exciting field of science and engineering.
CITATION STYLE
Melvin, A. T. (2016). A hands-on approach to teaching K-12 students about microfluidic devices (work in progress). In ASEE Annual Conference and Exposition, Conference Proceedings (Vol. 2016-June). American Society for Engineering Education. https://doi.org/10.18260/p.26329
Mendeley helps you to discover research relevant for your work.