In this study, we developed a mouse model of adoptive immunotherapy reflecting immune recognition of syngeneic tumor cells naturally expressing an endogenous rejection Ag. Specifically, in a pulmonary metastases model, we examined the potency and maintenance of an antitumor CD8+ CTL response in vivo, as well as its effectiveness against an “extensive” tumor burden. The approach taken was to first generate tumor-specific CTL from mice challenged with the CMS4 sarcoma coadministered with anti-CTLA4 mAb, which has been shown to facilitate the induction of Ag-specific T cell responses in vivo. An H-2Ld-restricted nonamer peptide, derived from an endogenous murine leukemia provirus was identified as a CMS4-reactive CTL epitope based upon the following: CTL cross-recognition of another syngeneic tumor cell line (CT26 colon carcinoma) previously characterized to express that gene product; sensitization of Ag-negative lymphoblasts or P815 targets with the peptide; and by cold target inhibition assays. In vivo, the adoptive transfer of CMS4-reactive CTL (≥1 × 106) resulted in nearly the complete regression of 3-day established lung metastases. Furthermore, mice that rejected CMS4 following a single adoptive transfer of CTL displayed antitumor activity to a rechallenge 45 days later, not only in the lung, but also at a s.c. distal site. Lastly, the adoptive transfer of CTL to mice harboring extensive pulmonary metastases (>150 nodules) led to a substantial reduction in tumor burden. Overall, these data suggest that the adoptive transfer of tumor-specific CTL may have therapeutic potential for malignancies that proliferate in or metastasize to the lung.
CITATION STYLE
Ryan, M. H., Bristol, J. A., McDuffie, E., & Abrams, S. I. (2001). Regression of Extensive Pulmonary Metastases in Mice by Adoptive Transfer of Antigen-Specific CD8+ CTL Reactive Against Tumor Cells Expressing a Naturally Occurring Rejection Epitope. The Journal of Immunology, 167(8), 4286–4292. https://doi.org/10.4049/jimmunol.167.8.4286
Mendeley helps you to discover research relevant for your work.