A review on evaluating mental stress by deep learning using EEG signals

9Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

Abstract

Mental stress is a common problem that affects individuals all over the world. Stress reduces human functionality during routine work and may lead to severe health defects. Early detection of stress is important for preventing diseases and other negative health-related consequences of stress. Several neuroimaging techniques have been utilized to assess mental stress, however, due to its ease of use, robustness, and non-invasiveness, electroencephalography (EEG) is commonly used. This paper aims to fill a knowledge gap by reviewing the different EEG-related deep learning algorithms with a focus on Convolutional Neural Networks (CNNs) and Long Short-Term Memory networks (LSTMs) for the evaluation of mental stress. The review focuses on data representation, individual deep neural network model architectures, hybrid models, and results amongst others. The contributions of the paper address important issues such as data representation and model architectures. Out of all reviewed papers, 67% used CNN, 9% LSTM, and 24% hybrid models. Based on the reviewed literature, we found that dataset size and different representations contributed to the performance of the proposed networks. Raw EEG data produced classification accuracy around 62% while using spectral and topographical representation produced up to 88%. Nevertheless, the roles of generalizability across different deep learning models and individual differences remain key areas of inquiry. The review encourages the exploration of innovative avenues, such as EEG data image representations concurrently with graph convolutional neural networks (GCN), to mitigate the impact of inter-subject variability. This novel approach not only allows us to harmonize structural nuances within the data but also facilitates the integration of temporal dynamics, thereby enabling a more comprehensive assessment of mental stress levels.

References Powered by Scopus

Recent advances in convolutional neural networks

4695Citations
N/AReaders
Get full text

Review of deep learning: concepts, CNN architectures, challenges, applications, future directions

4398Citations
N/AReaders
Get full text

Stress revisited: A critical evaluation of the stress concept

1119Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Decoding Brain Signals from Rapid-Event EEG for Visual Analysis Using Deep Learning

1Citations
N/AReaders
Get full text

KDTL: knowledge-distilled transfer learning framework for diagnosing mental disorders using EEG spectrograms

1Citations
N/AReaders
Get full text

KRAFS-ANet: A novel framework for EEG-based stress classification using channel selection and optimized ensemble stacking

1Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Badr, Y., Tariq, U., Al-Shargie, F., Babiloni, F., Al Mughairbi, F., & Al-Nashash, H. (2024, July 1). A review on evaluating mental stress by deep learning using EEG signals. Neural Computing and Applications. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00521-024-09809-5

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 7

54%

Researcher 4

31%

Lecturer / Post doc 2

15%

Readers' Discipline

Tooltip

Computer Science 5

45%

Engineering 5

45%

Neuroscience 1

9%

Save time finding and organizing research with Mendeley

Sign up for free