Kontrol Kecepatan Motor Induksi menggunakan Algoritma Backpropagation Neural Network

  • DJALAL M
  • HUTORO K
  • IMRAN A
N/ACitations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

ABSTRAKBanyak strategi kontrol berbasis kecerdasan buatan telah diusulkan dalam penelitian seperti Fuzzy Logic dan Artificial Neural Network (ANN). Tujuan dari penelitian ini adalah untuk mendesain sebuah kontrol agar kecepatan motor induksi dapat diatur sesuai kebutuhan serta membandingkan kinerja motor induksi tanpa kontrol dan dengan kontrol. Dalam penelitian ini diusulkan sebuah metode artificial neural network untuk mengontrol kecepatan motor induksi tiga fasa. Kecepatan referensi motor diatur pada kecepatan 140 rad/s, 150 rad/s, dan 130 rad/s. Perubahan kecepatan diatur pada setiap interval 0.3 detik dan waktu simulasi maksimum adalah 0,9 detik. Kasus 1 tanpa kontrol, menunjukkan respon torka dan kecepatan dari motor induksi tiga fasa tanpa kontrol. Meskipun kecepatan motor induksi tiga fasa diatur berubah pada setiap 0,3 detik tidak akan mempengaruhi torka. Selain itu, motor induksi tiga fasa tanpa kontrol memiliki kinerja yang buruk dikarenakan kecepatan motor induksi tidak dapat diatur sesuai dengan kebutuhan. Kasus 2 dengan control backpropagation neural network, meskipun kecepatan motor induksi tiga fasa berubah pada setiap 0.3 detik tidak akan mempengaruhi torsi. Selain itu, kontrol backpropagation neural network memiliki kinerja yang baik dikarenakan kecepatan motor induksi dapat diatur sesuai dengan kebutuhan.Kata kunci: Backpropagation Neural Network (BPNN), NN Training, NN Testing, Motor.ABSTRACTMany artificial intelligence-based control strategies have been proposed in research such as Fuzzy Logic and Artificial Neural Network (ANN). The purpose of this research was design a control for the induction motor speed that could be adjusted as needed and compare the performance of induction motor without control and with control. In this research, it was proposed an artificial neural network method to control the speed of three-phase induction motors. The reference speed of motor was set at the rate of 140 rad / s, 150 rad / s, and 130 rad / s. The speed change was set at every 0.3 second interval and the maximum simulation time was 0.9 seconds. Case 1, without control, shows the torque response and velocity of three-phase induction motor without control. Although the speed of three phase induction motor was set to change at every 0.3 seconds, it would not affect the torque. The uncontrolled three-phase induction motors had poor performance due to induction motor speeds could not be adjusted as needed. Case 2 with backpropagation neural network control, although the speed of three phase induction motor changing at every 0.3 seconds would not affect the torque. In addition, the backpropagation neural network control had a good performance because the speed of induction motor could be adjusted as needed.Keywords: Backpropagation Neural Network (BPNN), NN Training, NN Testing, Motor

Cite

CITATION STYLE

APA

DJALAL, M. R., HUTORO, K., & IMRAN, A. (2018). Kontrol Kecepatan Motor Induksi menggunakan Algoritma Backpropagation Neural Network. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 5(2), 138. https://doi.org/10.26760/elkomika.v5i2.138

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free