Flood quantile estimation based on partial duration series (peak over threshold, POT) represents a noteworthy alternative to the classical annual maximum approach since it enlarges the available information spectrum. Here the POT approach is discussed with reference to its benefits in increasing the robustness of flood quantile estimations. The classical POT approach is based on a Poisson distribution for the annual number of exceedences, although this can be questionable in some cases. Therefore, the Poisson distribution is compared with two other distributions (binomial and Gumbel-Schelling). The results show that only rarely is there a difference from the Poisson distribution. In the second part we investigate the robustness of flood quantiles derived from different approaches in the sense of their temporal stability against the occurrence of extreme events. Besides the classical approach using annual maxima series (AMS) with the generalized extreme value distribution and different parameter estimation methods, two different applications of POT are tested. Both are based on monthly maxima above a threshold, but one also uses trimmed L-moments (TL-moments). It is shown how quantile estimations based on this “robust” POT approach (rPOT) become more robust than AMS-based methods, even in the case of occasional extraordinary extreme events.
CITATION STYLE
Fischer, S., & Schumann, A. (2016). Robust flood statistics: comparison of peak over threshold approaches based on monthly maxima and TL-moments. Hydrological Sciences Journal, 61(3), 457–470. https://doi.org/10.1080/02626667.2015.1054391
Mendeley helps you to discover research relevant for your work.