Applied insight: studying reducing the carbon footprint of the drying process and its environmental impact and financial return

0Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.

Abstract

Harnessing solar energy is one of the most important practical insights highlighted to mitigate the severe climate change (CC) phenomenon. Therefore, this study aims to focus on the use of hybrid solar dryers (HSDs) within an environmentally friendly framework, which is one of the promising applications of solar thermal technology to replace traditional thermal technology that contributes to increasing the severity of the CC phenomenon. The HSD, based on a traditional electrical energy source (HSTEE) and electrical energy from photovoltaic panels (HSPVSE), was evaluated compared to a traditional electrical (TE) dryer for drying some medicinal and aromatic plants (MAPs). This is done by evaluating some of the drying outputs, energy consumed, carbon footprint, and financial return at 30, 40, and 50°C. The best quality of dried MAP samples in terms of essential oil (EO, %) and microbial load was achieved at 40°C. The HSTEE dryer has reduced energy consumption compared to the TE dryer by a percentage ranging from 37% to 54%. The highest CO2 mitigated ratio using the HSTEE dryer was recorded in thyme, marjoram, and lemongrass samples, with values ranging from 45% to 54% at 30, 40, and 50°C. The highest financial return obtained from energy consumption reduction and carbon credit footprint was achieved at 50°C, with values ranging from 5,313.69 to 6,763.03 EGP/year (EGP ≈ 0.0352 USD) when coal was used as a fuel source for the generation of electricity. Moreover, the HSPVSE dryer achieved a 100% reduction in traditional energy consumption and then reduced CO2 emissions by 100%, which led to a 100% financial return from both energy reduction and carbon credit. The highest financial returns were observed at 50°C, with values ranging from 13,872.56 to 15,007.02, 12,927.28 to 13,984.43, and 11,981.99 to 12,961.85 EGP/year (EGP ≈ 0.0352 USD) for coal, oil, and natural gas, respectively. The HS dryers show potential for environmental conservation contribution; furthermore, earning money from energy savings and carbon credit could help improve the living standards and maximize benefits for stakeholders.

Cite

CITATION STYLE

APA

Ibrahim, A., Amer, A., Elsebaee, I., Sabahe, A., & Amer, M. A. (2024). Applied insight: studying reducing the carbon footprint of the drying process and its environmental impact and financial return. Frontiers in Bioengineering and Biotechnology, 12. https://doi.org/10.3389/fbioe.2024.1355133

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free