Sparse deformable models with application to cardiac motion analysis

9Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Deformable models have been widely used with success in medical image analysis. They combine bottom-up information derived from image appearance cues, with top-down shape-based constraints within a physics-based formulation. However, in many real world problems the observations extracted from the image data often contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue, we introduce a new family of deformable models that are inspired from compressed sensing, a technique for efficiently reconstructing a signal based on its sparseness in some domain. In this problem, we employ sparsity to represent the outliers or gross errors, and combine it seamlessly with deformable models. The proposed new formulation is applied to the analysis of cardiac motion, using tagged magnetic resonance imaging (tMRI), where the automated tagging line tracking results are very noisy due to the poor image quality. Our new deformable models track the heart motion robustly, and the resulting strains are consistent with those calculated from manual labels. © 2013 Springer-Verlag.

Cite

CITATION STYLE

APA

Yu, Y., Zhang, S., Huang, J., Metaxas, D., & Axel, L. (2013). Sparse deformable models with application to cardiac motion analysis. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7917 LNCS, pp. 208–219). https://doi.org/10.1007/978-3-642-38868-2_18

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free