Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films

77Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template-polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results in highly aligned, highly crystalline donor-acceptor polymer thin films over large area (>1 cm 2) and promoted charge transport along both the polymer backbone and the π €-π € stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.

Cite

CITATION STYLE

APA

Mohammadi, E., Zhao, C., Meng, Y., Qu, G., Zhang, F., Zhao, X., … Diao, Y. (2017). Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films. Nature Communications, 8. https://doi.org/10.1038/ncomms16070

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free