A model for wind-generated surface gravity waves, WAVEWATCH III®, is used to analyze and interpret buoy measurements of wave spectra. The model is applied to a hindcast of a wave event in sea ice in the western Arctic, 11–14 October 2015, for which extensive buoy and ship-borne measurements were made during a research cruise. The model, which uses a viscoelastic parameterization to represent the impact of sea ice on the waves, is found to have good skill—after calibration of the effective viscosity—for prediction of total energy, but over-predicts dissipation of high frequency energy by the sea ice. This shortcoming motivates detailed analysis of the apparent dissipation rate. A new inversion method is applied to yield, for each buoy spectrum, the inferred dissipation rate as a function of wave frequency. For 102 of the measured wave spectra, visual observations of the sea ice were available from buoy-mounted cameras, and ice categories (primarily for varying forms of pancake and frazil ice) are assigned to each based on the photographs. When comparing the inversion-derived dissipation profiles against the independently derived ice categories, there is remarkable correspondence, with clear sorting of dissipation profiles into groups of similar ice type. These profiles are largely monotonic: they do not exhibit the “roll-over” that has been found at high frequencies in some previous observational studies.
CITATION STYLE
Rogers, W. E., Thomson, J., Shen, H. H., Doble, M. J., Wadhams, P., & Cheng, S. (2016). Dissipation of wind waves by pancake and frazil ice in the autumn Beaufort Sea. Journal of Geophysical Research: Oceans, 121(11), 7991–8007. https://doi.org/10.1002/2016JC012251
Mendeley helps you to discover research relevant for your work.