Tight bounds for linkages in planar graphs

22Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Disjoint-Paths Problem asks, given a graph G and a set of pairs of terminals (s 1,t 1),...,(s k ,t k ), whether there is a collection of k pairwise vertex-disjoint paths linking s i and t i , for i = 1,...,k. In their f(k)•n 3 algorithm for this problem, Robertson and Seymour introduced the irrelevant vertex technique according to which in every instance of treewidth greater than g(k) there is an "irrelevant" vertex whose removal creates an equivalent instance of the problem. This fact is based on the celebrated Unique Linkage Theorem, whose - very technical - proof gives a function g(k) that is responsible for an immense parameter dependence in the running time of the algorithm. In this paper we prove this result for planar graphs achieving g(k) = 2 O(k). Our bound is radically better than the bounds known for general graphs. Moreover, our proof is new and self-contained, and it strongly exploits the combinatorial properties of planar graphs. We also prove that our result is optimal, in the sense that the function g(k) cannot become better than exponential. Our results suggest that any algorithm for the Disjoint-Paths Problem that runs in time better than will probably require drastically different ideas from those in the irrelevant vertex technique. © 2011 Springer-Verlag.

Cite

CITATION STYLE

APA

Adler, I., Kolliopoulos, S. G., Krause, P. K., Lokshtanov, D., Saurabh, S., & Thilikos, D. (2011). Tight bounds for linkages in planar graphs. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6755 LNCS, pp. 110–121). https://doi.org/10.1007/978-3-642-22006-7_10

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free