Degradation of sulfadiazine in aqueous media by peroxymonosulfate activated with biochar-supported ZnFe2O4 in combination with visible light in an internal loop-lift reactor

10Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Solid waste resource utilization and the treatment of wastewater are two important aspects in environmental protection. Here, biochar (BC) derived from municipal sewage sludge has been combined with ZnFe2O4 to form the photocatalyst ZnFe2O4/biochar (ZnFe/BC), and it was used to degrade sulfadiazine (SDZ) in the presence of peroxymonosulfate (PMS) under visible (Vis) light irradiation in an internal loop-airlift reactor (ALR). The surface morphology and structure of ZnFe/BC have been characterized by X-ray diffraction (XRD), scanning electron microscopy equipped with an attachment for energy-dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). ZnFe/BC displays outstanding photocatalytic performance and reusability. After four reuse cycles of ZnFe/BC in the Vis/ZnFe/BC/PMS system, the SDZ degradation rate and efficiency still reached 0.082 min−1 and 99.05%, respectively. Reactive species in this system included free radicals SO4˙−, ˙OH, and ˙O2−, as well as non-radicals 1O2, e−, and h+, as established from the results of chemical quenching experiments and electron paramagnetic resonance (EPR) analyses. Moreover, a mechanism of action of the Vis/ZnFe/BC/PMS system for SDZ degradation was proposed. The acute toxicity of the reaction solution towards Photobacterium phosphoreum T3 spp. in the Vis/ZnFe/BC/PMS process increased during the first 40 min and then decreased, illustrating that Vis/ZnFe/BC/PMS provided an effective and safe method for the removal of SDZ.

Cite

CITATION STYLE

APA

Wang, Y., Gan, T., Xiu, J., Liu, G., & Zou, H. (2022). Degradation of sulfadiazine in aqueous media by peroxymonosulfate activated with biochar-supported ZnFe2O4 in combination with visible light in an internal loop-lift reactor. RSC Advances, 12(37), 24088–24100. https://doi.org/10.1039/d2ra04573g

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free