IL-13 is a potent down-modulator of macrophage proinflammatory activity in vitro, similar in this context to the anti-inflammatory cytokines IL-4 and IL-10. Since IL-10 effectively confers protection to mice from LPS-induced lethal endotoxemia through inhibition of proinflammatory cytokine production, we investigated whether IL-13 may also be capable of providing protection in this experimental model of endotoxic shock. A single injection of recombinant murine IL-13 (rmIL-13; 0.5-10 microg) significantly increased survival in a dose-dependent manner when a lethal i.p. injection of endotoxin was administered to BALB/c mice. This effect appeared to be IL-13 specific, since survival was not affected in mice that received heat-inactivated rmIL-13. rmIL-13 provided significant protection to mice even when given 30 min after LPS injection; however, this protection decreased in a time-dependent manner as the administration of rmIL-13 was delayed by 1, 2, and 5 h following LPS injection. The protective effect of IL-13 was correlated with significant decreases in the production of the inflammatory mediators TNF-alpha, IFN-gamma, and IL-12 as well as a decrease in the anti-inflammatory mediator IL-10. Our data suggest that IL-13 provides protection from LPS-induced lethal endotoxemia in a manner that is similar to but independent from that of IL-10, and therefore can be added to the list of cytokine immunomodulators that might be beneficial in the treatment of septic shock.
CITATION STYLE
Muchamuel, T., Menon, S., Pisacane, P., Howard, M. C., & Cockayne, D. A. (1997). IL-13 protects mice from lipopolysaccharide-induced lethal endotoxemia: correlation with down-modulation of TNF-alpha, IFN-gamma, and IL-12 production. The Journal of Immunology, 158(6), 2898–2903. https://doi.org/10.4049/jimmunol.158.6.2898
Mendeley helps you to discover research relevant for your work.