Nrf-2 is a redox-sensitive transcription factor that is activated by an oxidative signal in the cytoplasm but has a critical cysteine that must be reduced to bind to DNA in the nucleus. The glutathione (GSH) and thioredoxin (TRX) systems have overlapping functions in thiol/disulfide redox control in both the cytoplasm and the nucleus, and it is unclear whether these are redundant or have unique functions in control of Nrf-2-dependent signaling. To test whether GSH and Trx-1 have distinct functions in Nrf-2 signaling, we selectively modified GSH by metabolic manipulation and selectively modified Trx-1 expression by transient transfection. Cytoplasmic activation of Nrf-2 was measured by its nuclear translocation and nuclear activity of Nrf-2 was measured by expression of a luciferase reporter construct containing an ARE4 from glutamate cysteine ligase. Results showed that tert-butylhydroquinone (TBHQ), a transcriptional activator that functions through Nrf-2/ARE, promoted Nrf-2 nuclear translocation by a type I (thiylation) redox switch which was regulated by GSH not by Trx-1. In contrast, the ARE reporter was principally controlled by nuclear-targeted Trx-1 and not by GSH. The data show that the GSH and TRX systems have unique, compartmented functions in the control of transcriptional regulation by Nrf-2/ARE. © Society of Toxicology 2004; all rights reserved.
CITATION STYLE
Hansen, J. M., Watson, W. H., & Jones, D. P. (2004). Compartmentation of Nrf-2 redox control: Regulation of cytoplasmic activation by glutathione and DNA binding by thioredoxin-1. Toxicological Sciences, 82(1), 308–317. https://doi.org/10.1093/toxsci/kfh231
Mendeley helps you to discover research relevant for your work.