Hyperglucagonemia in an animal model of insulin- deficient diabetes: What therapy can improve it?

9Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Intra-islet insulin contributes to alpha-cell suppression. Akita mice carry a toxic-gain-of- function Ins2 gene mutation encoding proinsulin-C(A7)Y, similar to that described in human Mutant Ins-gene induced Diabetes of Youth, which decreases intra-islet insulin. Herein, we examined Akita mice for examination of circulating insulin and circulating glucagon levels. The possibility that loss of intra-islet suppression of alpha-cells, with increased circulating glucagon, contributes to diabetes under conditions of intra-islet insulin deficiency, raises questions about effective treatments that may be available. Methods: Blood glucose, plasma insulin, C-peptide I, C-peptide II, and glucagon were measured at various times during development of diabetes in Akita mice. We also used Akita- like hProC(A7)Y-CpepGFP transgenic mice in Ins2+/+, Ins2+/- and Ins2-/- genetic backgrounds (providing animals with greater or lesser defects in islet insulin production, respectively) in order to examine the relative abundance of immunostainable intra-islet glucagonpositive and insulin-positive cells. Similar measurements were made in Akita mice. Finally, the effects of treatment with insulin, exendin-4, and leptin on blood glucose were then compared in Akita mice. Results: Interestingly, total insulin levels in the circulation were not frankly low in Akita mice, although they did not rise appropriately with the onset of hyperglycemia. By contrast, in severely diabetic Akita mice at 6 weeks of age, circulating glucagon levels were significantly elevated. Additionally, in Ins2+/- and Ins2-/- mice bearing the Akita-like hProC(A7)Y-CpepGFP transgene, development of diabetes correlated with an increase in the relative intra-islet abundance of immunostainable glucagon-positive cells, and a similar observation was made in Akita islets. In Akita mice, whereas a brief treatment with exendin-4 resulted in no apparent improvement in hyperglycemia, leptin treatment resulted in restoration of normoglycemia. Curiously, leptin treatment also suppressed circulating glucagon levels. Conclusions: Loss of insulin-mediated intra-islet suppression of glucagon production may be a contributor to hyperglycemia in Akita mice, and leptin treatment appears beneficial in such a circumstance. This treatment might also be considered in some human diabetes patients with diminished insulin reserve.

Cite

CITATION STYLE

APA

Barbetti, F., Colombo, C., Haataja, L., Cras-Méneur, C., Bernardini, S., & Arvan, P. (2016). Hyperglucagonemia in an animal model of insulin- deficient diabetes: What therapy can improve it? Clinical Diabetes and Endocrinology, 2(1). https://doi.org/10.1186/S40842-016-0029-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free