We argue that phenotypic plasticity should be broadly construed to encompass a diversity of phenomena spanning several hierarchical levels of organization. Despite seemingly disparate outcomes among different groups of organisms (e.g., the opening/closing of stomata in leaves, adjustments of allocation to growth/reproduction, or the production of different castes in social insects), there are underlying shared processes that initiate these responses. At the most fundamental level, all plastic responses originate at the level of individual cells, which receive and process signals from their environment. The broad variations in physiology, morphology, behavior, etc., that can be produced by a single genotype, can be accounted for by processes regulating gene expression in response to environmental variation. Although evolution of adaptive plasticity may not be possible for some types of environmental signals, in many cases selection has molded responses to environmental variation that generate precise and repeatable patterns of gene expression. We highlight the example of responses of plants to variation in light quality and quantity, mediated via the phytochrome genes. Responses to changes in light at particular stages of plants' life cycles (e.g., seed germination, competition, reproduction) are controlled by different members of this gene family. The mechanistic details of the cell and molecular biology of phytochrome gene action (e.g., their effects on expression of other genes) is outlined. Plasticity of cells and organisms to internal and external environmental signals is pervasive, and represents not just an outcome of evolutionary processes, but also a potentially important molder of them. Phenotypes originally initiated via a plastic response, can be fixed through genetic assimilation as alternate regulatory pathways are shut off. Evolution of mechanisms of plasticity and canalization can both reduce genetic variation, as well as shield it. When the organism encounters novel environmental conditions, this shielded variation may be expressed, revealing hidden reaction norms that represent the raw material for subsequent evolution.
CITATION STYLE
Campbell, P., Bendek, C., & Latorre, B. A. (2007). Riesgo de oídio (Erysiphe necator) de la vid en relación con el desarrollo de los racimos. Ciencia e Investigación Agraria, 34(1). https://doi.org/10.4067/s0718-16202007000100001
Mendeley helps you to discover research relevant for your work.