Ship detection in synthetic aperture radar (SAR) images has witnessed rapid development in recent years, especially after the adoption of convolutional neural network (CNN)-based methods. Recently, a transformer using self-attention and a feed forward neural network with a encoder-decoder structure has received much attention from researchers, due to its intrinsic characteristics of global-relation modeling between pixels and an enlarged global receptive field. However, when adapting transformers to SAR ship detection, one challenging issue cannot be ignored. Background clutter, such as a coast, an island, or a sea wave, made previous object detectors easily miss ships with a blurred contour. Therefore, in this paper, we propose a local-sparse-information-aggregation transformer with explicit contour guidance for ship detection in SAR images. Based on the Swin Transformer architecture, in order to effectively aggregate sparse meaningful cues of small-scale ships, a deformable attention mechanism is incorporated to change the original self-attention mechanism. Moreover, a novel contour-guided shape-enhancement module is proposed to explicitly enforce the contour constraints on the one-dimensional transformer architecture. Experimental results show that our proposed method achieves superior performance on the challenging HRSID and SSDD datasets.
CITATION STYLE
Shi, H., Chai, B., Wang, Y., & Chen, L. (2022). A Local-Sparse-Information-Aggregation Transformer with Explicit Contour Guidance for SAR Ship Detection. Remote Sensing, 14(20). https://doi.org/10.3390/rs14205247
Mendeley helps you to discover research relevant for your work.