Determination of natural in vivo noble-gas concentrations in human blood

6Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Although the naturally occurring atmospheric noble gases He, Ne, Ar, Kr, and Xe possess great potential as tracers for studying gas exchange in living beings, no direct analytical technique exists for simultaneously determining the absolute concentrations of these noble gases in body fluids in vivo. In this study, using human blood as an example, the absolute concentrations of all stable atmospheric noble gases were measured simultaneously by combining and adapting two analytical methods recently developed for geochemical research purposes. The partition coefficients determined between blood and air, and between blood plasma and red blood cells, agree with values from the literature. While the noble-gas concentrations in the plasma agree rather well with the expected solubility equilibrium concentrations for air-saturated water, the red blood cells are characterized by a distinct supersaturation pattern, in which the gas excess increases in proportion to the atomic mass of the noble-gas species, indicating adsorption on to the red blood cells. This study shows that the absolute concentrations of noble gases in body fluids can be easily measured using geochemical techniques that rely only on standard materials and equipment, and for which the underlying concepts are already well established in the field of noble-gas geochemistry. © 2014 Tomonaga et al.

Cite

CITATION STYLE

APA

Tomonaga, Y., Brennwald, M. S., Livingstone, D. M., Tomonaga, G., & Kipfer, R. (2014). Determination of natural in vivo noble-gas concentrations in human blood. PLoS ONE, 9(5). https://doi.org/10.1371/journal.pone.0096972

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free