Whereas the mechanisms underlying oscillatory insulin secretion remain unknown, several models have been advanced to explain if they involve generation of metabolic oscillations in β-cells. Evidence, including measurements of oxygen consumption, glucose consumption, NADH, and ATP/ADP ratio, has accumulated to support the hypothesis that energy metabolism in β-cells can oscillate. Where simultaneous measurements have been made, these oscillations are well correlated with oscillations in intracellular [Ca2+] and insulin secretion. Considerable evidence has been accumulated to suggest that entry of Ca2+ into cells can modulate metabolism both positively and negatively. The main positive effect of Ca2+ is an increase in oxygen consumption, believed to involve activation of mitochondrial dehydrogenases. Negative feedback by Ca2+ includes decreases in glucose consumption and decreases in the mitochondrial membrane potential. Ca2+ also provides negative feedback by increasing consumption of ATP. The negative feedback provided by Ca2+ provides a mechanism for generating oscillations based on a model in which glucose stimulates a rise in ATP/ADP ratio that closes ATP-sensitive K+ (KATP) channels, thus depolarizing the cell membrane and allowing Ca2+ entry through voltage-sensitive channels. Ca2+ entry reduces the ATP/ADP ratio and allows reopening of the KATP channel.
CITATION STYLE
Kennedy, R. T., Kauri, L. M., Dahlgren, G. M., & Jung, S. K. (2002). Metabolic oscillations in β-cells. In Diabetes (Vol. 51). American Diabetes Association Inc. https://doi.org/10.2337/diabetes.51.2007.s152
Mendeley helps you to discover research relevant for your work.