Hypoxia is widely accepted as a fundamental biological phenomenon, which is strongly associated with tissue damage and cell viability under stress conditions. Insulin-like growth factor-1 (IGF-1) is known to protect tissues from multiple types of damage, and protect cells from apoptosis. Hypoxia is a regulatory factor of the IGF system, however the role of the IGF-1 receptor (IGF-1R) in hypoxia-induced apoptosis remains unclear. The present study investigated the potential mechanisms associated with IGF-1R-associated apoptosis under hypoxic conditions. Mouse embryonic fibroblasts exhibiting disruption or overexpression of IGF-1R (R-cells and R+ cells) were used to examine the level of apoptosis, autophagy, and production of reactive oxygen species (ROS). The autophagy inhibitor 3-methyladenine was used to assess the effect of autophagy on ROS production and apoptosis under hypoxic conditions. A potential downstream signaling pathway involving phosphatidylinositol 3-kinase (PI3K)/threonine protein kinase B (Akt)/mammalian target of rapamycin (mTOR) was identifiedby western blot analysis. The results demonstrated that hypoxia induced apoptosis, increased ROS production, and promoted autophagy in a time-dependent manner relative to that observed under normoxia. R+ cells exhibited a lower percentage of apoptotic cells, lower ROS production, and higher levels of autophagy when compared to that of R-cells. In addition, inhibition of autophagy led to increased ROS production and a higher percentage of apoptotic cells in the two cell types. Furthermore, IGF-1R is related with PI3K/Akt/mTOR signaling pathway and enhanced autophagy-associated protein expression, which was verified following treatment with the PI3K inhibitor LY294002. These results indicated that IGF-1R may increase cell viability under hypoxic conditions by promoting autophagy and scavenging ROS production, which is closed with PI3K/Akt/mTOR signaling pathway.
CITATION STYLE
Liu, Q., Guan, J. Z., Sun, Y., Le, Z., Zhang, P., Yu, D., & Liu, Y. (2017). Insulin-like growth factor 1 receptor-mediated cell survival in hypoxia depends on the promotion of autophagy via suppression of the PI3K/Akt/mTOR signaling pathway. Molecular Medicine Reports, 15(4), 2136–2142. https://doi.org/10.3892/mmr.2017.6265
Mendeley helps you to discover research relevant for your work.