Background: Herpes simplex virus type-1 (HSV-1) is the leading cause of infectious blindness worldwide. Through a multistep process, HSV-1 enters into naturally susceptible human corneal epithelial (HCE) cells where it establishes an optimal environment for viral replication and spread. HSV-1 employment of cytoskeletal proteins, kinases, and cell signalling pathways is crucial for the entry process. Methods: Here we demonstrate that non-muscle myosin IIA (NM-IIA) and/or a myosin activating kinase, myosin light chain kinase (MLCK), can be targeted for the development of new and effective therapies against HSV-1. HCE cells were incubated with MLCK inhibitors ML-7 and ML-9 and NM-IIA inhibitor blebbistatin. Following the application of inhibitors, HSV-1 entry and spread to neighbouring HCE cells was evaluated. Results: Upon application of MLCK inhibitors ML-7 and ML-9 and NM-IIA inhibitor blebbistatin, HSV-1 entry into HCE cells was significantly decreased. Furthermore, dramatic impairment of glycoprotein-mediated membrane fusion was seen in cells treated with MLCK inhibitors, thus establishing a role for MLCK activation in cell-to-cell fusion and multinucleated syncytial cell formation. These results also indicate that the activation of motor protein NM-IIA by MLCK is crucial for cytoskeletal changes required for HSV-1 infection of corneal cells. Conclusions: We provide new evidence that NM-IIA and MLCK can be used as effective antiviral targets against ocular herpes. ©2014 International Medical Press.
CITATION STYLE
Antoine, T. E., & Shukla, D. (2014). Inhibition of myosin light chain kinase can be targeted for the development of new therapies against herpes simplex virus type-1 infection. Antiviral Therapy, 19(1), 15–29. https://doi.org/10.3851/IMP2661
Mendeley helps you to discover research relevant for your work.