Systematic Scatterometer Wind Errors Near Coastal Mountains

5Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Satellite scatterometers provide the only regular observations of surface wind vectors over vast swaths of the world oceans, including coastal regions, which are of great scientific and societal interest but still present challenges for remote sensing. Here we demonstrate systematic scatterometer wind errors near Hawaii's Big Island: Two counter-rotating lee vortices, which are clear in the International Comprehensive Ocean-Atmosphere Data Set ship-based wind climatology and in aircraft observations, are absent in the Jet Propulsion Laboratory and Remote Sensing Systems scatterometer wind climatologies. We demonstrate similar errors in the representation of transient Catalina Eddy events in the Southern California Bight. These errors likely arise from the nonuniqueness of scatterometer wind observations, that is, an “ambiguity removal” is required during processing to select from multiple wind solutions to the geophysical model function. We discuss strategies to improve the ambiguity selection near coastal mountains, where small-scale wind reversals are common.

Cite

CITATION STYLE

APA

Kilpatrick, T., Xie, S. P., Tokinaga, H., Long, D., & Hutchings, N. (2019). Systematic Scatterometer Wind Errors Near Coastal Mountains. Earth and Space Science, 6(10), 1900–1914. https://doi.org/10.1029/2019EA000757

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free