In a previous study of fungal peritoneal injury in peritoneal dialysis patients, complement (C)-dependent pathological changes were developed in zymosan (Zy)-induced peritonitis by peritoneal scraping. However, the injuries were limited to the parietal peritoneum and did not show any fibrous encapsulation of the visceral peritoneum, which differs from human encapsular peritoneal sclerosis (EPS). We investigated peritoneal injury in a rat model of Zy-induced peritonitis pretreated with methylglyoxal (MGO) instead of scraping (Zy/MGO peritonitis) to clarify the role of C in the process of fibrous encapsulation of the visceral peritoneum. Therapeutic effects of an anti-C5a complementary peptide, AcPepA, on peritonitis were also studied. In Zy/MGO peritonitis, peritoneal thickness, fibrin exudation, accumulation of inflammatory cells, and deposition of C3b and C5b-9 with loss of membrane C regulators were increased along the peritoneum until day 5. Onday 14, fibrous encapsulation of the visceral peritoneum was observed, resembling human EPS. Peritoneal injuries and fibrous changes were significantly improved with AcPepA treatment, even when AcPepA was administered following injection of Zy in Zy/MGO peritonitis. The data show that C5a might play a role in the development of encapsulation-like changes in the visceral peritoneum in Zy/MGO peritonitis. AcPepA might have therapeutic effects in fungal infection-induced peritoneal injury by preventing subsequent development of peritoneal encapsulation.
CITATION STYLE
Iguchi, D., Mizuno, M., Suzuki, Y., Sakata, F., Maruyama, S., Okada, A., … Ito, Y. (2018). Anti-C5a complementary peptide mitigates zymosan-induced severe peritonitis with fibrotic encapsulation in rats pretreated with methylglyoxal. American Journal of Physiology - Renal Physiology, 315(6), F1732–F1746. https://doi.org/10.1152/ajprenal.00172.2018
Mendeley helps you to discover research relevant for your work.