Involvement of DNA curvature in intergenic regions of prokaryotes

25Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

It is known that DNA curvature plays a certain role in gene regulation. The distribution of curved DNA in promoter regions is evolutionarily preserved, and it is mainly determined by temperature of habitat. However, very little is known on the distribution of DNA curvature in termination sites. Our main objective was to comprehensively analyze distribution of curved sequences upstream and downstream to the coding genes in prokaryotic genomes. We applied CURVATURE software to 170 complete prokaryotic genomes in a search for possible typical distribution of DNA curvature around starts and ends of genes. Performing cluster analyses and other statistical tests, we obtained novel results regarding various factors influencing curvature distribution in intergenic regions, such as growth temperature, A + T composition and genome size. We also analyzed intergenic regions between converging genes in 15 selected genomes. The results show that six genomes presented peaks of curvature excess larger than 3 SDs. Insufficient statistics did not allow us to draw further conclusion. Our hypothesis is that DNA curvature could affect transcription termination in many prokaryotes either directly, through contacts with RNA polymerase, or indirectly, via contacts with some regulatory proteins. © 2006 Oxford University Press.

Cite

CITATION STYLE

APA

Kozobay-Avraham, L., Hosid, S., & Bolshoy, A. (2006). Involvement of DNA curvature in intergenic regions of prokaryotes. Nucleic Acids Research, 34(8), 2316–2327. https://doi.org/10.1093/nar/gkl230

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free