We present photometry and spectroscopy of SN 2013fs and SN 2013fr in the first~100 d postexplosion. Both objects showed transient, relatively narrow Hα emission lines characteristic of SNe IIn, but later resembled normal SNe II-P or SNe II-L, indicative of fleeting interaction with circumstellar material (CSM). SN 2013fs was discovered within 8 h of explosion; one of the earliest SNe discovered thus far. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SN IIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNe II-P and SNe IIn. It requires dense CSM within 6.5 × 1014 cm of the progenitor, from a phase of advanced pre-SN mass loss beginning shortly before explosion. Spectropolarimetry of SN 2013fs shows little continuum polarization (~0.5 per cent, consistent with zero), but noticeable line polarization during the plateau phase. SN 2013fr morphed from an SN IIn at early times to an SN II-L. After the first epoch, its narrow lines probably arose from host-galaxy emission, but the bright, narrow Hα emission at early times may be intrinsic to the SN. As for SN 2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNe IIn and SNe II-L. It is a low-velocity SN II-L like SN 2009kr, but more luminous. SN 2013fr also developed an infrared excess at later times, due to warm CSM dust that requires a more sustained phase of strong pre-SN mass loss.
CITATION STYLE
Bullivant, C., Smith, N., Williams, G. G., Mauerhan, J. C., Andrews, J. E., Fong, W. F., … Clubb, K. I. (2018). SN 2013fs and SN 2013fr: Exploring the circumstellar-material diversity in Type II supernovae. Monthly Notices of the Royal Astronomical Society, 476(2), 1497–1518. https://doi.org/10.1093/MNRAS/STY045
Mendeley helps you to discover research relevant for your work.