Reducing greenhouse gas emissions is a crucial challenge in urban areas characterized by high energy consumption and reduced exposure to nature. In this context, the urban green system could play a pivotal role. In the literature, scholars have analyzed both the ability of species-specific and layout-specific green infrastructure to increase carbon sequestration and the best location sites for new green infrastructure to increase the provision of overall ecosystem services. There is a lack of studies helping green urban planners and designers choose where and which green infrastructure to implement based on vegetation species-specific performance and the local carbon emissions of city components. This paper uses tree inventory data from a medium-sized city in central Italy (Perugia) to develop a spatial analysis of urban park performance in carbon sequestration. Then, the method evaluates the carbon emission of a public city building to generate a spatialized balance between building demand and tree supply to support local decisions about the best locations for new green infrastructure and the choice between species. The paper contributes to GIS-based tools that vary the recommended location sites and species for new green infrastructure based on the demanded ecosystem service.
CITATION STYLE
Menconi, M. E., Bonciarelli, L., & Grohmann, D. (2024). Assessment of the Potential Contribution of the Urban Green System to the Carbon Balance of Cities. Environments - MDPI, 11(5). https://doi.org/10.3390/environments11050098
Mendeley helps you to discover research relevant for your work.