Oesophageal cancer is a serious disease worldwide. In China, the incidence of esophageal cancer was reported to be ~478,000 in 2015. In the same year, the incidence of esophageal cancer in the United States was ~16,910. Radiotherapy serves as an important tool in the treatment of oesophageal cancer, and although radiation therapy has progressed over time, the prognosis of the majority of patients with oesophageal cancer remains poor. Additionally, the sensitivity of patients with oesophageal cancer to radiotherapy and chemotherapy is not yet clear. Although there are a number of studies on the radiosensitivity of oesophageal cancer cell lines, the vastly different results from different cell lines make them unreliable to use as a guide in clinical practice. Therefore, a common radiosensitive gene signature may provide more reliable results, and using different combinations of common gene signatures to predict the outcome of patients with oesophageal cancer may generate a unique gene signature in oesophageal cancer. In the present study, the radiosensitive index and prognostic index were calculated to predict clinical outcomes. The prognostic index of a 41-gene signature combination is the largest combination of gene signatures used for classifying oesophageal cancer patients into radiosensitive (RS) and radioresistance (RR) groups, to the best of our knowledge, and this gene signature was more effective in patients classified as having Stage III oesophageal cancer. Furthermore, four genes (carbonyl reduc‑ tase 1, serine/threonine kinase PAK2, ras‑related protein Rab 13 and twinfilin‑1) may be sufficient to classify patients into either RS or RR. Subsequent to gene enrichment analysis, the cell communication pathway was significantly different between RS and RR groups in oesophageal cancer. These results may provide useful insights in improving radiotherapy strategies in clinical decisions.
CITATION STYLE
Zhang, Q., Bing, Z., Tian, J., Wang, X., Liu, R., Li, Y., … Yang, Y. (2019). Integrating radiosensitive genes improves prediction of radiosensitivity or radioresistance in patients with oesophageal cancer. Oncology Letters, 17(6), 5377–5388. https://doi.org/10.3892/ol.2019.10240
Mendeley helps you to discover research relevant for your work.