The proline utilization (put) operon from Salmonella typhimurium consists of the putP gene, encoding a proline transporter, and the putA gene, encoding an enzyme with both proline dehydrogenase and 1-pyrroline-5-carboxylate dehydrogenase activities. In addition to these two enzymatic activities, the PutA protein is a transcriptional repressor that regulates the expression of putP and putA in response to the availability of proline. We report the isolation of super-repressor mutants of PutA that decrease expression from the putA promoter in the presence or absence of proline. None of the mutants exhibited increased affinity for the DNA in the put regulatory region in vitro. Although DNA binding by wildtype PutA was prevented by the addition of proline and an artificial electron acceptor, DNA binding by the two strongest super-repressors was not prevented under identical conditions. The proline dehydrogenase activity of the purified mutant proteins showed altered kinetic properties (increased Km(Pro), reduced Vmax, or a completely null phenotype). The observation that these mutations simultaneously affect induction by proline and proline dehydrogenase activity suggests that a single proline-binding site is involved in both proline dehydrogenase activity and induction of the expression of the put operon. Furthermore, the results indicate that the proline dehydrogenase activity of PutA is essential for induction of the put operon by proline.
CITATION STYLE
Muro-Pastor, A. M., & Maloy, S. (1995). Proline dehydrogenase activity of the transcriptional represser putA is required for induction of the put operon by proline. Journal of Biological Chemistry, 270(17), 9819–9827. https://doi.org/10.1074/jbc.270.17.9819
Mendeley helps you to discover research relevant for your work.