In-vivo longitudinal recordings require reliable means to automatically discriminate between distinct behavioral states, in particular between awake and sleep epochs. The typical approach is to use some measure of motor activity together with extracellular electrophysiological signals, namely the relative contribution of theta and delta frequency bands to the Local Field Potential (LFP). However, these bands can partially overlap with oscillations characterizing other behaviors such as the 4 Hz accompanying rodent freezing. Here, we first demonstrate how standard methods fail to discriminate between sleep and freezing in protocols where both behaviors are observed. Then, as an alternative, we propose to use the smoothed cortical spindle power to detect sleep epochs. Finally, we show the effectiveness of this method in discriminating between sleep and freezing in our recordings.
CITATION STYLE
Pompili, M. N., & Todorova, R. (2022). Discriminating Sleep From Freezing With Cortical Spindle Oscillations. Frontiers in Neural Circuits, 16. https://doi.org/10.3389/fncir.2022.783768
Mendeley helps you to discover research relevant for your work.