Self-Assembly 2D Ti3C2/g-C3N4 MXene Heterojunction for Highly Efficient Photocatalytic Degradation of Tetracycline in Visible Wavelength Range

8Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

An ultrathin 2D Ti3C2/g-C3N4 MXene (2D-TC/CN) heterojunction was synthesized, using a facile self-assembly method; the perfect microscopic-morphology and the lattice structure presented in the sample with a 2 wt% content of Ti3C2 were observed by the field-emission scanning electron microscopy (SEM) and transmission electron microscope (TEM). The optimized sample (2-TC/CN) exhibited excellent performance in degrading the tetracycline (TC), and the degradation rate reached 93.93% in the conditions of 20 mg/L, 50 mL of tetracycline within 60 min. Except for the increased specific-surface area, investigated by UV-vis diffuse reflectance spectra (UV-vis DRS) and X-ray photoelectron microscopy (XPS) valence spectra, the significantly enhanced photocatalytic activity of the 2-TC/CN could also be ascribed to the formation of Ti-N bonds between Ti3C2 and g-C3N4 nanosheets, which reduced the width of the band gap through adjusting the position of the valence band, thus resulting in the broadened light-absorption. Furthermore, the facilitated electron transmission was also proved by time-resolved photoluminescence (TRPL) and electrochemical impedance spectroscopy (EIS), which is effective in improving the quantum efficiency of photo-generated electrons. In addition, the resulting radical-capture experiment suggested that superoxide radicals have the greatest influence on photodegradation performance, with the photodegradation rate of TC reducing from 93.16% to 32.08% after the capture of superoxide radicals, which can be attributed to the production of superoxide radicals only, by the 2-TC/CN composites with a high conduction-band value (−0.62 eV). These facilely designed 2D Ti3C2/g-C3N4 composites possess great application potential for the photodegradation of tetracycline and other antibiotics.

Cite

CITATION STYLE

APA

Li, C., Kan, C., Meng, X., Liu, M., Shang, Q., Yang, Y., … Cui, X. (2022). Self-Assembly 2D Ti3C2/g-C3N4 MXene Heterojunction for Highly Efficient Photocatalytic Degradation of Tetracycline in Visible Wavelength Range. Nanomaterials, 12(22). https://doi.org/10.3390/nano12224015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free