We recast the Aiyagari-Bewley-Huggett model of income and wealth distribution in continuous time. This workhorse model - as well as heterogeneous agent models more generally - then boils down to a system of partial differential equations, a fact we take advantage of to make two types of contributions. First, a number of new theoretical results: (1) an analytic characterization of the consumption and saving behaviour of the poor, particularly their marginal propensities to consume; (2) a closed-form solution for the wealth distribution in a special case with two income types; (3) a proof that there is a unique stationary equilibrium if the intertemporal elasticity of substitution is weakly greater than one. Second, we develop a simple, efficient and portable algorithm for numerically solving for equilibria in a wide class of heterogeneous agent models, including - but not limited to - the Aiyagari-Bewley-Huggett model.
CITATION STYLE
Achdou, Y., Han, J., Lasry, J. M., Lions, P. L., & Moll, B. (2022). Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach. Review of Economic Studies, 89(1), 45–86. https://doi.org/10.1093/restud/rdab002
Mendeley helps you to discover research relevant for your work.