Tabular Data Generation to Improve Classification of Liver Disease Diagnosis

8Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Liver diseases are among the most common diseases worldwide. Because of the high incidence and high mortality rate, these diseases diagnoses are vital. Several elements harm the liver. For instance, obesity, undiagnosed hepatitis infection, and alcohol abuse. This causes abnormal nerve function, bloody coughing or vomiting, insufficient kidney function, hepatic failure, jaundice, and liver encephalopathy. The diagnosis of this disease is very expensive and complex. Therefore, this work aims to assess the performance of various machine learning algorithms at decreasing the cost of predictive diagnoses of chronic liver disease. In this study, five machine learning algorithms were employed: Logistic Regression, K-Nearest Neighbor, Decision Tree, Support Vector Machine, and Artificial Neural Network (ANN) algorithm. In this work, we examined the effects of the increased prediction accuracy of Generative Adversarial Networks (GANs) and the synthetic minority oversampling technique (SMOTE). Generative opponents’ networks (GANs) are a mechanism to produce artificial data with a distribution close to real data distribution. This is achieved by training two different networks: the generator, which seeks to produce new and real samples, and the discriminator, which classifies the augmented samples using supervised classifications. Statistics show that the use of increased data slightly improves the performance of the classifier.

Cite

CITATION STYLE

APA

Alauthman, M., Aldweesh, A., Al-qerem, A., Aburub, F., Al-Smadi, Y., Abaker, A. M., … Alzubi, B. (2023). Tabular Data Generation to Improve Classification of Liver Disease Diagnosis. Applied Sciences (Switzerland), 13(4). https://doi.org/10.3390/app13042678

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free