A long gravity-piston corer developed for seafloor gas hydrate coring utilizing an in situ pressure-retained method

34Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

A corer, which can obtain long in situ pressure-retained sediments of up to 30 m core containing gas hydrates, has been applied in the South China Sea (SCS) dozens of times. The corer presented in this paper is a convenient, efficient and economical long in situ pressure-retained coring and research tool for submarine sediments, that can applied to completely cope with all sediments close to the seafloor ranging from shallow waters to the deep sea depths of 6000 m. This article mainly presents the overall structure, working principles, key pressure-retained components, coring mechanism, sea trials and outlook of the corer. The analyses found that the coring ability was affected by formation characteristics, the outer diameter of the core barrels and inner diameter of the core liners, the shapes of the cutter and the dead weight of the corer. This study can provide the practical basis for the structural optimization of this type of corer and designs for corers with greater penetrability. Sea trials showed that the developed corer presented in this paper can support the in situ pressure of the seafloor sediment core, which is an improvement over the conventional piston corer. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Cite

CITATION STYLE

APA

Chen, J. W., Fan, W., Bingham, B., Chen, Y., Gu, L. Y., & Li, S. L. (2013). A long gravity-piston corer developed for seafloor gas hydrate coring utilizing an in situ pressure-retained method. Energies, 6(7), 3353–3372. https://doi.org/10.3390/en6073353

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free