Measuring mathematics self-efficacy: Multitrait-multimethod comparison

2Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Previous studies had shown that there is a certain relationship between mathematics self-efficacy and math performance. For students, parents, and front-line scholars, it is urgent and important to study the measurement relationship between math achievement and self-efficacy. The research aimed to observe how to measure mathematics self-efficacy and find which of the three traits and which of the three methods better reflect individuals’ self-efficacy. The present study used a multitrait-multimethod (MTMM) design to measure mathematics self-efficacy by constructing the confirmatory factor analysis (CFA) model. “Number and Algebra,” “Graphics and Geometry,” and “Synthesis and Practice” were considered three traits, and General-Math-Task-referenced self-efficacy, Unconventional-Math-Problem-referenced self-efficacy, and Motivated Strategies for Learning Questionnaire (MSLQ) self-efficacy were discussed as three methods to study. A questionnaire survey was used to obtain data. A total of 100 students completed all the questionnaires. Excel was used to collect math scores, and SPSS version 26.0 and AMOS version 26.0 were used to manage the data, confirm a hypothesis, and build a model by using MTMM design and CFA. CFA was used to verify convergent validity and discriminant validity. A total of eight models were constructed in the study that includes first-order CFA models and second-order CFA models, and model D was finally selected as the most perfect model in the second-order CFA model. The results showed that the “Synthesis and Practice” fields were the most significant reflection of self-efficacy among the three traits. MSLQ was the most significant reflection of self-efficacy among the three methods. It is beneficial to improve the level of self-efficacy from the aspect of mathematics subject. In addition, the research confirmed that CFA can support MTMM data for data modeling and found that the correlation between the Unconventional-Math-Problem-referenced self-efficacy and MSLQ is higher than that of General-Math-Task-referenced self-efficacy in the second-order model. It makes certain theoretical significance for improving students’ mathematics self-efficacy levels.

Cite

CITATION STYLE

APA

Yu, W., Zhou, S., & Zhou, Y. (2023). Measuring mathematics self-efficacy: Multitrait-multimethod comparison. Frontiers in Psychology, 14. https://doi.org/10.3389/fpsyg.2023.1108536

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free