Thermal management is the most vital element of electric vehicles (EV) to control the maximum temperature of module/pack for safety reasons. This paper presents a novel passive thermal management system (TMS) composed of a heat sink (HS) and phase change materials (PCM) for lithium-ion capacitor (LiC) technology under the premise that the cell is cycled with a continuous 150 A fast charge/discharge current rate. The experiments are validated against numerical analysis through a computational fluid dynamics (CFD) model. For this purpose, a comprehensive electro-thermal model based on an equivalent circuit model (ECM) is designed. The designed electrothermal model combines the ECM model with the thermal model since the performance of the LiC cell highly depends on the temperature. Then, the robustness of the model is evaluated using a precise second-order ECM. The extracted parameters of the electro-thermal model are verified by the experimental results in which the voltage and temperature errors are less than ±5% and ±4%, respectively. Finally, the thermal performance of the HS-assisted PCM TMS is studied under the fast charge/discharge current rate. The 3D CFD results exhibit that the temperature of the LiC when using the PCM-HS as the cooling system was reduced by 38.3% (34.1◦C) compared to the natural convection case study (55.3◦C).
CITATION STYLE
Karimi, D., Behi, H., Akbarzadeh, M., Van Mierlo, J., & Berecibar, M. (2021). Holistic 1d electro-thermal model coupled to 3d thermal model for hybrid passive cooling system analysis in electric vehicles. Energies, 14(18). https://doi.org/10.3390/en14185924
Mendeley helps you to discover research relevant for your work.