Preparation of Graphene Quantum Dots by Visible-Fenton Reaction and Ultrasensitive Label-Free Immunosensor for Detecting Lipovitellin of Paralichthys Olivaceus

8Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

The increasing levels of environmental estrogens are causing negative effects on water, soil, wildlife, and human beings; label-free immunosensors with high specificities and sensitivities are being developed to test estrogeneous chemicals in complex environmental conditions. For the first time, highly fluorescent graphene quantum dots (GQDs) were prepared using a visible-Fenton catalysis reaction with graphene oxide (GO) as a precursor. Different microscopy and spectroscopy techniques were employed to characterize the physical and chemical properties of the GQDs. Based on the fluorescence resonance energy transfer (FRET) between amino-functionalized GQDs conjugated with anti-lipovitellin monoclonal antibodies (Anti-Lv-mAb) and reduced graphene oxide (rGO), an ultrasensitive fluorescent “ON-OFF” label-free immunosensor for the detection of lipovitellin (Lv), a sensitive biomarker derived from Paralichthys olivaceus for environmental estrogen, has been established. The immunosensor has a wide linear test range (0.001–1500 ng/mL), a lower limit of detection (LOD, 0.9 pg/mL), excellent sensitivity (26,407.8 CPS/(ng/mL)), and high selectivity and reproducibility for Lv quantification. The results demonstrated that the visible-Fenton is a simple, mild, green, efficient, and general approach to fabricating GQDs, and the fluorescent “ON-OFF” immunosensor is an easy-to-use, time-saving, ultrasensitive, and accurate detection method for weak estrogenic activity.

Cite

CITATION STYLE

APA

Yang, A., Su, Y., Zhang, Z., Wang, H., Qi, C., Ru, S., & Wang, J. (2022). Preparation of Graphene Quantum Dots by Visible-Fenton Reaction and Ultrasensitive Label-Free Immunosensor for Detecting Lipovitellin of Paralichthys Olivaceus. Biosensors, 12(4). https://doi.org/10.3390/bios12040246

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free