This paper presents a design concept and acceptance test application procedure for a deep pit protection structure. The structure is intended for use in the construction of three underground levels of a residential building: A, B, C and D, located in Block 10C, Budva, Montenegro. The anchored wall will consist of non-gravity cantilevered walls with three levels of ground anchors. Non-gravity cantilevered walls employ continuous walls constructed in slurry trenches (i.e., slurry (diaphragm) walls), e.g., vertical elements that are drilled to depths below the finished excavation grade. For those non-gravity cantilevered walls, support is provided through the shear and bending stiffness of the vertical wall elements and passive resistance from the soil below the finished excavation grade. Anchored wall support relies on these components as well as lateral resistance provided by the ground anchors to resist horizontal pressures (e.g., earth, water and external loads) acting on the wall. The anchored wall analyzed in this paper will be recommended for use as a temporary supporting structure necessary for the excavation and erection of the underground structure. The design life of the temporary ground anchors is two years. Dynamic loads are not considered in this analysis.
CITATION STYLE
Helidon Kokona, & Enkeleda Kokona. (2016). Design Concept for an Anchored Diaphragm Wall in the Central Part of Budva, Montenegro. Journal of Civil Engineering and Architecture, 10(7). https://doi.org/10.17265/1934-7359/2016.07.009
Mendeley helps you to discover research relevant for your work.