Block Krylov subspace methods for functions of matrices

43Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

A variety of block Krylov subspace methods have been successfully developed for linear systems and matrix equations. The application of block Krylov methods to compute matrix functions is, however, less established, despite the growing prevalence of matrix functions in scientific computing. Of particular importance is the evaluation of a matrix function on not just one but multiple vectors. The main contribution of this paper is a class of efficient block Krylov subspace methods tailored precisely to this task. With the full orthogonalization method (FOM) for linear systems forming the backbone of our theory, the resulting methods are referred to as B(FOM)2: block FOM for functions of matrices. Many other important results are obtained in the process of developing these new methods. Matrix-valued inner products are used to construct a general framework for block Krylov subspaces that encompasses already established results in the literature. Convergence bounds for B(FOM)2 are proven for Stieltjes functions applied to a class of matrices which are self-adjoint and positive definite with respect to the matrix-valued inner product. A detailed algorithm for B(FOM)2 with restarts is developed, whose efficiency is based on a recursive expression for the error, which is also used to update the solution. Numerical experiments demonstrate the power and versatility of this new class of methods for a variety of matrix-valued inner products, functions, and matrices.

Cite

CITATION STYLE

APA

Frommer, A., Lund, K., & Szyld, D. B. (2017). Block Krylov subspace methods for functions of matrices. Electronic Transactions on Numerical Analysis, 47, 100–126. https://doi.org/10.1553/etna_vol47s100

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free