Brain transcriptome analysis of a familial Alzheimer's disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production

20Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To prevent or ameliorate Alzheimer's disease (AD) we must understand its molecular basis. AD develops over decades but detailed molecular analysis of AD brains is limited to postmortem tissue where the stresses initiating the disease may be obscured by compensatory responses and neurodegenerative processes. Rare, dominant mutations in a small number of genes, but particularly the gene PRESENILIN 1 (PSEN1), drive early onset of familial AD (EOfAD). Numerous transgenic models of AD have been constructed in mouse and other organisms, but transcriptomic analysis of these models has raised serious doubts regarding their representation of the disease state. Since we lack clarity regarding the molecular mechanism(s) underlying AD, we posit that the most valid approach is to model the human EOfAD genetic state as closely as possible. Therefore, we sought to analyse brains from zebrafish heterozygous for a single, EOfAD-like mutation in their PSEN1-orthologous gene, psen1. We previously introduced an EOfAD-like mutation (Q96-K97del) into the endogenous psen1 gene of zebrafish. Here, we analysed transcriptomes of young adult (6-month-old) entire brains from a family of heterozygous mutant and wild type sibling fish. Gene ontology (GO) analysis implies effects on mitochondria, particularly ATP synthesis, and on ATP-dependent processes including vacuolar acidification.

Cite

CITATION STYLE

APA

Newman, M., Hin, N., Pederson, S., & Lardelli, M. (2019). Brain transcriptome analysis of a familial Alzheimer’s disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production. Molecular Brain, 12(1). https://doi.org/10.1186/s13041-019-0467-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free