Purpose To develop a classification model using texture features and support vector machine in contrast-enhanced T1-weighted images to differentiate between brain metastasis and radiation necrosis. Methods Texture features were extracted from 115 lesions: 32 of them previously diagnosed as radiation necrosis, 23 as radiation-treated metastasis and 60 untreated metastases; including a total of 179 features derived from six texture analysis methods. A feature selection technique based on support vector machine was used to obtain a subset of features that provide optimal performance. Results The highest classification accuracy evaluated over test sets was achieved with a subset of ten features when the untreated metastases were not considered; and with a subset of seven features when the classifier was trained with untreated metastases and tested on treated ones. Receiver operating characteristic curves provided area-under-the-curve (mean±standard deviation) of 0.94±0.07 in the first case, and 0.93±0.02 in the second. Conclusion High classification accuracy (AUC>0.9) was obtained using texture features and a support vector machine classifier in an approach based on conventional MRI to differentiate between brain metastasis and radiation necrosis.
CITATION STYLE
Larroza, A., Moratal, D., Paredes-Sánchez, A., Soria-Olivas, E., Chust, M. L., Arribas, L. A., & Arana, E. (2015). Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. Journal of Magnetic Resonance Imaging, 42(5), 1362–1368. https://doi.org/10.1002/jmri.24913
Mendeley helps you to discover research relevant for your work.